- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0001000003000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Koushanfar, Farinaz (4)
-
Samragh, Mohammad (4)
-
Javaheripi, Mojan (2)
-
Huang, Ke (1)
-
Hussain, Siam (1)
-
Imani, Mohsen (1)
-
Javidi, Tara (1)
-
Khaleghi, Behnam (1)
-
Rosing, Tajana (1)
-
Salamat, Sahand (1)
-
Zhang, Xinqiao (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Binary neural network (BNN) delivers increased compute intensity and reduces memory/data requirements for computation. Scalable BNN enables inference in a limited time due to different constraints. This paper explores the application of Scalable BNN in oblivious inference, a service provided by a server to mistrusting clients. Using this service, a client can obtain the inference result on his/her data by a trained model held by the server without disclosing the data or learning the model parameters. Two contributions of this paper are: 1) we devise lightweight cryptographic protocols explicitly designed to exploit the unique characteristics of BNNs. 2) we present an advanced dynamic exploration of the runtime-accuracy tradeoff of scalable BNNs in a single-shot training process. While previous works trained multiple BNNs with different computational complexities (which is cumbersome due to the slow convergence of BNNs), we train a single BNN that can perform inference under various computational budgets. Compared to CryptFlow2, the state-of-the-art technique in the oblivious inference of non-binary DNNs, our approach reaches 3 × faster inference while keeping the same accuracy. Compared to XONN, the state-of-the-art technique in the oblivious inference of binary networks, we achieve 2 × to 12 × faster inference while obtaining higher accuracy.more » « less
-
Javaheripi, Mojan; Samragh, Mohammad; Koushanfar, Farinaz (, IEEE Journal on Emerging and Selected Topics in Circuits and Systems)
-
Javaheripi, Mojan; Samragh, Mohammad; Javidi, Tara; Koushanfar, Farinaz (, IEEE Journal of Selected Topics in Signal Processing)null (Ed.)
-
Imani, Mohsen; Salamat, Sahand; Khaleghi, Behnam; Samragh, Mohammad; Koushanfar, Farinaz; Rosing, Tajana (, IEEE International Symposium on Field-Programmable Cusstom Computing Machines (FCCM))
An official website of the United States government
